
Universal tangle invariants and docile perturbed Gaussians

Dror Bar-Natan and Roland van der Veen

September 4, 2019

Recent changes: 2-09 added proof of multiplicativity of the coproduct, PBW theorem for QU
is for free. Lemma for existence of duals. 24-08 added graphical calculus proof of associativity of
the double. The knot-like graphical calculus! 21-08 Added double construction using R-matrix
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Abstract

We introduce a new way of computing universal knot and tangle invariants arising from ribbon Hopf
algebras. Our main example comes from a quantization of sl2 and provides an infinite sequence of strong yet
polynomially computable knot invariants.
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1 Universal invariant of tangles

1.1 v-Tangle diagrams

We work with framed oriented tangles without closed components. More precisely, a tangle consists of finitely
many properly embedded intervals in R2 × [0, 1] (the strands) with (distinct) endpoints on {0}×R×{0, 1}.
Two tangles are said to be isotopic if they are related by an isotopy of R2 × [0, 1] fixing the end points. By
the framing we mean a choice of homotopy class of non-tangent vector fields along each strand. All tangles
are considered up to isotopy and are assumed to be oriented and framed.

To describe our tangles we make use of v-tangle diagrams, an abstract notion of tangle diagram that
allows greater flexibility and simplicity. Our definition is closely related to Kauffman’s rotational virtual
tangles [2] but we prefer not to speak about virtual crossings as they add a complication that is not even
there.
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Definition 1. (v-Tangle diagram)
A v-tangle diagram is a finite oriented graph with four-valent and univalent vertices. The edges around
each vertex are cyclically ordered and the vertices are marked by a sign ±1. Each edge carries an orientation
and an integer called the rotation number. The edges are assumed to be a disjoint union of connected oriented
paths (called strands) with distinct endpoints. In addition the strands are all labeled by distinct elements of
some label set. The set of v-tangle diagrams with label set J is called DJ .

Two tangle diagrams are said to be equivalent if they can be related by relabeling and the moves shown
(without labels) in Figure 1.

Applying such a Reidemeister move to a diagram D means to replace a subgraph of D that looks like
the left-hand side by the tangle diagram shown in the right-hand side or vice versa.

A useful convention for drawing v-tangle diagrams is to embed any neighborhood of a vertex as a usual
crossing in the plane. The sign of the vertex should coincide with the sign of the crossing. Also, the edges
are immersed in the plane so that 2π times their rotation number agrees with the rotation number of the
immersed interval in the plane. This however is merely a way of depicting the diagram, we insist that the
actual diagram is an abstract graph, not necessarily related to the plane.

Any tangle is represented by a v-tangle diagram. To obtain a diagram we choose a projection on the
plane and make sure the framing vector field is parallel to the plane. Also the tangent vector to the strands
near begin/end points and all crossings points in the positive y-direction. The rotation number in the plane
provides the rotation number of each edge. Of course there are also v-tangle diagrams that do not correspond
to usual tangles but those are not our primary interest.

Figure 1: ACCORDING TO POLYAK WE NEED TO ADD ANOTHER CYCLIC R2 MOVE! Reidemeister
moves for v-tangle diagrams, swirl R0, double kink R1d, braid-like and cyclic Reidemeister 2, R2b, R2c and
Reidemeister 3. The rotation numbers of the edges of each diagram are implied by how they are immersed
in the plane.

Proposition 1. Two v-tangle diagrams corresponding to the same tangle are equivalent, i.e. related by the
moves of Figure 1.

Proof. See [3] p.46, Thm 3.3.

To give more precise algebraic definitions it is useful to introduce a notation for the basic labelled v-
tangle diagrams, see Figure 2. First there are the positive and negative crossings Xij , X̄ij with the (cyclic)
orientations as shown in the figure. The labels are i, j with the i corresponding to the overstrand if we
draw X as an actual crossing and the rotation number on all edges is 0. Next Ci, C̄i, 1i represent a single
crossingless strand labelled i with rotation number 1,−1, 0 respectively. Since our v-tangle diagrams are just
decorated graphs it should be clear that any v-tangle diagram can be obtained from stitching together copies
of X, X̄, C, C̄ and 1.

Figure 2: The basic v-tangle diagrams: Positive and negative crossing Xij , X̄ij with over-strand labelled i,
the crossingless strands Ci, C̄i and 1i with rotation numbers 1,−1 and 0.

Next let us define some operations on v-tangle diagrams called union, merging/stitching, doubling, erasing
and antipoding. All these operations are natural in the sense that they extend to equivalence classes of v-
tangle diagrams. As an illustration Figure 3 shows all the operations (except union) applied to the diagram
D shown in the middle.

In what follows we will often use the symbol // for left-to-right composition of functions as f//g = g ◦ f .
As our running example to illustrate the operations we use the diagram D ∈ D{i,j}
Definition 2. (Operations on v-tangle diagrams)

1. Union. If J, J ′ are disjoint we consider the union DD′ of D ∈ DJ and D′ ∈ DJ′ to be the (disjoint
union) of the underlying graphs. It is an element of DJ∪J′ .
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Figure 3: Applying four operations to the diagram D in the middle. The operations are merge/stitch mijk,

antipode Si, erase εi and double ∆i
`r. For Si we drew a second diagram that makes it more clear what is

happening: the orientation of the strand i is reversed, however this is not a legal v-tangle diagram in the

strict sense. Also for mijk the edges of the graph are immersed in the plane to indicate the correct rotation
numbers, the resulting graph still has 3 fourvalent vertices (crossings).

2. Merging/stiching mij
k .

For i, j, k /∈ J and D ∈ D{i,j}∪J define mij
k (D) ∈ D{k}∪J to be the diagram where the endpoint of

strand i is identified with the start point of strand j, the resulting 2-valent vertex is removed and the
rotation number on the new edge is the sum of the rotation numbers of its two parts. Finally the newly
created strand is labeled k.

3. Erasing εi.
Deletes strand labelled i, removing all adjacent vertices.

4. Doubling ∆i
jk sends a diagram D ∈ D{i}∪J to D{j,k}∪J .

It replaces strand i by a pair of parallel (with respect to the framing) strands called j, k following
the same path. In terms of union, merging and the basic v-tangle diagrams doubling is defined by
∆i
jk(DD′) = ∆i

jk(D)∆i
jk(D′) and mij

k //∆
k
`r = ∆i

12∆j
34//m

13
` //m

24
r and mij

u //∆
k
`r = ∆k

`r//m
ij
u for k 6= u,

together with its effect on the basic v-tangle diagrams:

Xij//∆
i
`r = X`2Xr1//m

12
i Xij//∆

j
`r = X1`X2r//m

12
j X̄ij//∆

i
`r = X̄`1X̄r2//m

12
i X̄ij//∆

j
`r = X̄2`X̄1r//m

12
j

and zi//∆
i
jk = zjzk for z ∈ {Ci, C̄i, 1i} and for any diagram z not containing label i we have ∆i

jk(z) = z.

5. Antipode Si is a map from D{i}∪J to itself
defined by the fact that it reverses the strand i, sending the rotation numbers of the edges of i to
their negatives and adds a small correction to the first and last edge as shown above. In terms of
generators and relations it is defined by Si(DD

′) = Si(D)Si(D
′) and mij

k //Sk = Si//Sj//m
ji
k and

mij
u //Sk = Sk//m

ij
u for k 6= u. On the basic v-tangle diagrams we set

Xij//Sj = X̄ij Xij//Si = C̄1X̄2jC3//m
123
i X̄ij//Si = Xij X̄ij//Sj = C̄1X̄i2C3//m

123
j

and 1i//Si = 1i, Ci//Si = C̄i, C̄i//Si = Ci and for any diagram z not containing label i we have
Si(z) = z.

The notation m123
i means m12

j //m
j3
i or equivalently m23

j //m
1j
i . More generally when merging many things

we use the notation m
(abcd... )
i = mab

i //m
ic
i //m

id
i // . . . . One reason for working with our abstract notion of

v-tangle diagrams is that merging is not well-defined for usual tangle diagrams, as one has to explain how
the two strands were connected. In an abstract graph there is no such obligation. Also to save brackets our
convention is that taking union always has priority so for example AB//mij

k means (AB)//mij
k .

To further illustrate the operations on example D in Figure 3 note that in our algebraic notation

D = X̄51Xj4X26C̄3//m
12345
i //mj6

j
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According to our algebraic definition of the antipode Si we thus get

D//Si = S5(S1(X̄51))S4(Xj4)S2(X26)S3(C̄3)//m54321
i //mj6

j = X̄51X̄j4C̄aX̄b6CcC3//m
543abc1
i //mj6

j

Which is what was shown in the figure. For reference we indicated the indices of the individual pieces that
were merged/stitched in Figure 4.

Figure 4: The v-tangle diagram D and the effect of applying antipode S to strand i both with red numbers
indicating how the diagrams can be assembled from basic tangles.

Finally let us rewrite the (Reidemeister) equivalence of diagrams from Figure 1 in a purely algebraic
manner using our new notation:

C̄1C̄2X34C5C6//m
135
i //m246

j = Xij (R0)

X13C̄2X̄64C̄5//m
12345
i = 1i (R1d)

X̄12X34//m
13
i //m

24
j = 1i1j (R2b)

X̄12X34C0//m
13
i //m

402
j = 1i1j (R2c)

X12X46X53//m
14
i //m

25
j //m

36
k = X16X23X45//m

14
i //m

25
j //m

36
k (R3)

As claimed before the above operations on v-tangle diagrams are all natural in the sense that applying
an operation to both sides of one of the above equalities leads to equivalent diagrams. For ∆ and S this
requires some simple checking. For example we note that applying S turns R2b into R2c. Further checks of
this kind are left to the reader, see also [4].

1.2 Universal tangle invariant from a ribbon Hopf algebra

We start by establishing some notation on tensor products. For any finite set J we will use the notation U⊗J

for the |J |-th tensor power of algebra U where we label the tensor factors by the elements of the finite set
J . Subscripts will be used to indicate what tensor factor an element of U belongs to and factors containing
1 ∈ U will be ommitted. For example a1b2c5 means a⊗ b⊗ 1⊗ 1⊗ c ∈ U⊗{1,2,3,4,5}. Actually this notation
is a little ambiguous as it could also denote the 3-tensor in U⊗{1,2,5}. Similarly the notation Xij ∈ U⊗{i,j}
is used for a 2 tensor X whose first component is in tensor factor i and the second component is in factor
labelled j.

The multiplication m : U ⊗ U → U gives rise to maps mij
k : U⊗{i,j}∪J → U⊗{k}∪J where one multiplies

the elements in the tensor factor labelled i by those in factor j, placing the result in factor k. In case U
happens to be a Hopf algebra, the coproduct, antipode and co-unit give similar maps on the tensor powers:
∆i
jk : U⊗{i}∪J → U⊗{j,k}∪J and Si : U⊗{i}∪J → U⊗{i}∪J and εi : U⊗{i}∪J → U⊗J .

Given a ribbon Hopf algebra U with R-matrix X and ribbon element v set C = uv−1 and C̄ = uv−1

where u is the Drinfeld element. We define the universal U -invariant ZU on tangle diagrams by decomposing
the diagram into the basic tangles X, X̄, C, C̄, 1 by means of union and merging. The slogan is that merging
becomes multiplication and union becomes tensor product.

Definition 3. (Universal tangle invariant)
Define ZU : DJ → U⊗J on tangle diagrams as follows:

ZU//m
ij
k = mij

k //ZU ZU (DD′) = ZU (D)ZU (D′)

and ZU (B) = B for all basic diagrams B ∈ {Xij , X̄ij , Ci, C̄i, 1i}.
This definition is merely an algebraic restatement of the usual definition of the universal invariant (see

[3] p. 72) where one places algebra elements on the crossings, cups and caps of a tangle diagram. We do not
allow closed components to ensure that the invariant always takes values in a tensor power of the algebra.

The algebraic properties of a ribbon Hopf algebra are precisely such that ZU is well-defined and constant
on equivalence classes of tangle diagrams. In other words it gives rise to an invariant of tangles. It behaves
well under the natural operations that we defined above. In summary:
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Theorem 1. [3],[1]:
ZU is well-defined and constant on equivalence classes of tangle diagrams and hence gives rise to a tangle
invariant. Furthermore, ZU commutes with the natural operations ε,∆, S:

ZU//ε
i = εi//ZU ZU//Si = Si//ZU ZU//∆

i
jk = ∆i

jk//ZU

2 Main example: The algebra U
We now present our main example of a ribbon Hopf algebra whose universal tangle invariant we are interested
in. Actually U is a family of topological algebras over the ring Q[[~]] depending on a parameter ε.

Define U to be h-adic completion of the Q[[~]] algebra generated by y, t, a, x subject to the relations

[t, .] = 0 [a, x] = x [a, y] = −y xy − e~εyx = (1− e−~(2εa−t))/~

In other words the topology of U is that of Q[y, t, a, x][[~]].
The Hopf algebra structure is given by co-unit e : U → Q[[~]] defined by e(1) = 1 and e(g) = 0 for any

generator g and

∆(y) = y1 + e~(−εa1+t1)y2 S(y) = −e~(εa−t)y (1)

∆(t) = t1 + t2 S(t) = −t (2)

∆(a) = a1 + a2 S(a) = −a (3)

∆(x) = x1 + e−~εa1x2 S(x) = −e~εax (4)

Notice that at ~ = 0 we have the structure of a universal enveloping algebra of the Lie algebra with the
same relations except now [x, y] = 2εa− t. All tensor products should be taken in the completed sense. The
main reason for considering the ~-adic completion is that U the quasi-triangular with respect to the universal
R-matrix

Rij =

∞∑
m,n=0

~m+nymi t
n
i a

n
j x

m
j

[m]!n!

Here q = e~ε and [m] = 1−qm
1−q and [m]! = [1][2] . . . [m] This follows directly from the fact that U is obtained

from the Drinfeld double construction, see section XXX.
Finally U also has a ribbon element v = e−~(2εa1−t1)(X12//S1//m

12
1 ), see section YY We will later show

that this makes U into a (topological) ribbon Hopf algebra. All tensor products have to be completed for
this construction to make sense.

The similarity to the power series ring is strengthened by the PBW-type theorem:

Lemma 1. As a topological algebra U is generated by the monomials

{ykt`amxn|k, `,m, n ∈ N}

Proof. (prove this PBW theorem somewhere say using a variant of Chari-Pressley’s ad hoc ∆ argument on
p.199? Or use the dequantizator.)

When ε is invertible U is closely related to U~sl2. In fact the quotient of U by the two sided ideal generated
by t is isomorphic to (the completion of) U~sl2 when ε is invertible. Indeed consider the map φ : U→ ˆU~sl2
defined by φ(a) = 1

2
H and φ(x) = Eeε~H and φ(y) = F and φ(t) = 0. Then

eε~HE =
1

2
[H, eε~HE] = [φ(a), φ(x)] = φ([a, x]) = φ(x) = eε~HE

and (FIX THIS)

e~HE = eε~HEF − Feε~(1+H)E = φ(x)φ(y)− qφ(y)φ(x) =
1

~
(1− eε~H)

2.1 Computations in a completed PBW Hopf algebra

Consider a complete topological Q[[~]] algebra A topologically generated by the ordered sequence of generators
z = (z[1], z[2], . . . z[g]). In our main example A = U we have z = (z[1], z[2], z[3], z[4]) = (y, t, a, x). We will
assume the ordered monomials in z form a topological basis similar to the situation of a universal enveloping
algebra of a Lie algebra. In other words we have an isomorphism of topological vector spaces O : Q[z][[~]]→ A
sending a commutative monomial in z to a monomial ordered according to the basis. Both elements of A
and operations on them are viewed as continuous linear maps between (completed) tensor powers of A. Our
objective is to describe such maps using commutative power series by pulling them back along O.

Notice that the tensor powers of A form a category A as follows. The objects of A are finite sets and for
any pair of finite sets we set A(I, J) to be the set of continuous linear maps from A⊗I to A⊗J . The map O
will give us a functor from this category to a similar category of power series that we will introduce next.

The commutative counterpart is the category C whose objects are finite sets and morphisms C(I, J) =
Q[zj , j ∈ J ][[~, ζi i ∈ I]]. Here ζ = (ζ[1], . . . ζ[g]) is a vector of variables that we think of as dual to
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the commutative variables z. The composition f//g of f ∈ C(I, J) and g ∈ C(J,K) is defined by f//g =
(g|ζj 7→∂zj f)|zj=0. Here the index j runs over the set J . For example take I = {1}, J = {2, 3},K = {4, 5} and

f = ζ1 + z23 + ~z2ζ1 and g = z5ζ
2
3 + 2ζ2. Then f//g = 2~ζ1 + 2z5. More interestingly the identity takes the

form idI = e
∑
i∈I ziζi . For instance, zaζb//e

∑
i ζizi = zaζb because in pairing up the powers of z and ζ we

can only pair with 1
b!
zbζb which gives precisely zaζb back again. Since the notation (g|ζj 7→∂zj f)|zj=0 is a bit

awkward at times we introduce the notation 〈F 〉J = (F |ζj 7→∂zj )|zj=0 where again j runs over the elements
of J and the partial derivatives are assumed to be on the far left of each monomial of F .

As promised define the commutative description or differential operator functor D : A → C. On objects
D is the identity. For finite sets I, J and a linear map φ ∈ A(I, J) we set

D(φ) = (O⊗J)−1φ(O⊗Ie
∑
i ziζi)

Lemma 2. For finite sets I, J,K and φ ∈ P(I, J), ψ ∈ P(J,K) we have D(φ//ψ) = D(φ)//D(ψ). Moreover
if D(φ) = 0 then φ = 0.

Proof.

D(φ//ψ) = e
∑
i∈I ziζi//O⊗I//φ//(O⊗J)−1//O⊗J//ψ//(O⊗K)−1 = D(φ)//e

∑
j∈J z

jζj//O⊗J//ψ//(O⊗K)−1

In the last step we used the fact that composing with e
∑
j∈J z

jζj acts as the identity in C(I, J) as noted in
the example above. The proof of the first property is now complete.

For the second property, it follows from the fact that for any polynomial f(z) we have

φ(f(z)) = φ(f(∂ζ)e
zζ |ζ=0) = f(∂ζ)D(ezζ)|ζ=0

As an illustration we turn to the subalgebra A of U generated by a, x with relation [x, a] = −x. As
it is the universal enveloping algebra of a Lie algebra the PBW theorem tells us the ordered monomials
form a topological basis for A. More concretely monomials can be reordered using xqar = (a − q)rxq. The
multiplication is a map mij

k : A⊗{i,j} → A⊗{k} and our goal is to find its description D(mij
k ) ∈ C({i, j}, {k}) =

Q[ξi, ξj , αi, αj ][[ak, xk, ~]] in terms of commutative power series in a, x and the dual variables α, ξ.
According to the definition we have

D(mij
k ) = eαiai+αjaj+ξixi+ξjxj//O⊗{i,j}//mij

k //(O
−1)⊗{k} =

∑
q,r

ξqi α
r
j

q!r!
(eαiaxqareξjx)k//(O−1)⊗{k}

=
∑
q,r

ξqi α
r
j

q!r!
(eαia(a− q)rxqeξjx)k =

∑
q

ξqi
q!

(e(αia+αj(a−q))xqeξjx)k = e(αi+αj)ak+(e
−αj ξi+ξj)xk

Associativity of the algebra A means that m12
k //m

k3
` = m23

k //m
1k
` and this equality can be verified by applying

D to both sides: The left hand side becomes (using eλ∂zf(z)|z=0 = f(λ))

D(m12
k )//D(mk3

` ) = 〈e(α1+α2)ak+(e−α2ξ1+ξ2)xk+(αk+α3)a`+(e−~α3ξk+ξ3)x`〉k = e(α1+α2+α3)a`+(e−α2−α3ξ1+e
−α3ξ2+ξ3)x`

and the right hand side is left as an exercise to the reader. It is also instructive to confirm that A⊗{k} 3
(xa)k = a2x1//D(m12

k ) = 〈a2x1e(α1+α2)ak+(e−α2ξ1+ξ2)xk 〉12 = 〈a2eα2ake−α2xk〉2 = −xk +akxk = (ak−1)xk.
The fact that the expression summarizing multiplication in A

D(mij
k ) = e(αi+αj)ak+(e

−αj ξi+ξj)xk

is a relatively simple exponential formula means that multiplication in A may actually be simpler when carried
out from this point of view. In other words we prefer manipulating exponentials of generators instead of the
generators themselves. In fact we will explore in what sense the operations in our algebra send exponentials
to perturbed exponentials.

2.2 D(ZU) takes values in Docile Perturbed Gaussian Differential Opera-
tors

We now focus on our main example U where z = (y, t, a, x) and ζ = (η, τ, α, ξ). Instead of working with
general series in z, ζ we expand everything as power series in ε. Our main result is that in this case D takes
all relevant tensors to a category of docile perturbed Gaussian differential operators (DoPeGDO). Let us
first define this category:

Definition 4. (DoPeGDO)
Set z = (y, t, a, x) and ζ = (η, τ, α, ξ) and define a weight wt on these variables by wt(y) = wt(x) = wt(ξ) =
wt(η) = 1 and wt(α) = wt(t) = 0 and wt(τ) = wt(a) = 2, wt(~) = 0 and finally wt(ε) = −4. Also define
A = eα, T = e~t.
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The category DoPeGDO has finite sets as objects and the morphisms between I and J are elements of
the form

ωeQ(1 + P ) ∈ Q[ζi|i ∈ I][[~, zj , j ∈ J ][[ε]]

where ω ∈ Q(T
1
2 ), Q ∈ Q(A, T

1
2 )[z, ζ] has weight 2 and the coefficients of the weight (0, 2) part are in Q.

Next P =
∑∞
k=1 Pkε

k with Pk ∈ Q(A, T
1
2 )[z, ζ] and wt(P ) ≤ 0.

Composition of morphisms is defined as in C:

f//g = (g|ζj 7→∂zj f)|zj=0 j ∈ J

Theorem 2. For any tangle K labeled by set J we have D(ZU(K)) ∈ DoPeGDO(∅, J).
Also D(ei),D(∆i

jk),D(Si) and D(mij
k ) are morphisms of DoPeGDO.

A direct consequence of docility is that the space of morphisms in DoPeGDO only grows slowly, i.e. as
a polynomal in the complexity of the tangle diagram.

Corollary 1. For any c-component tangle diagram D with X crossings, the invariant D(ZU(D)) can be

computed to order εk in O(4kXc) elementary ring operations in Q(A, T
1
2 )[y, η, t, τ, a, α, x, ξ]. INCORRECT

FIX THIS

Already to first order in ε the invariant D(ZU(K)) separates the Rolfsen table of prime knots up to ten
crossings. This makes our stronger than the HOMFLY polynomial and Khovanov homology1, while they
take exponential time to compute ours is computed in polynomial time.

By construction our invariant is at least as strong as the universal quantum sl2 invariant or the colored
Jones polynomials. In fact we expect a more precise relation between our work and the loop expansion of
the colored Jones polynomial along the lines of Rozansky and Overbay.

Since our invariant is well-behaved under the natural tangle operations and is readily computable we
expect it is well suited for obtaining topological applications. As a starting point we mention a close relation
to the Alexander polynomial ∆K(t):

Proposition 2.

ω(K) = D(ZU(K))|ε=0 =
1

∆K(t)

An instructive way to prove this proposition is to start with any Seifert surface and use the natural tangle
operations to simultaneously build the knot and its invariant (to order 0) in the guise of the Seifert formula.

Along these lines many other topological and knot theoretical phenomena may be explored. Both theo-
retically and practically because it is relatively easy to generate a lot of data.

The key part of the proof of our main Theorem 2 is that the R-matrix D(ZU(Xij)) is in DoPeGDO.
This follows from Faddeev’s formula for the q-exponential ezq =

∑
n
zn

[n]!
:

Lemma 3. (Faddeev, Zagier, Quesne) Recall q = e~ε and D(ZU(Xij) = O(e~biaj e
~yixj
q ). We have

ezq = exp
∑
n

(1− q)nzn

n(1− qn)

Hence it and D(ZU(Xij) are in DoPeGDO.

Proof. Following Zagier (add reference), since the q-exponential is equal to its q-derivative we have

ezq =
eqzq − ezq
qz − z so log eqzq = log(1 + (1− q)z) + log ezq

Writing log ezq =
∑
n cnz

n the previous implies that qncn = − (1−q)n
n

+ cn proving the formula.

3 Computations in DoPeGDO

3.1 Gaussians in general

Before focusing on our main example we develop some general tools on Gaussian differential operators. We
work over a field F of characteristic 0.

Definition 5. Given finite sets I, J and variables z = (zj)j∈J and ζ = (ζi)i∈I , a general Gaussian is an
expression

eζQz
∞∑
k=0

Pkε
k ∈ F[zj , ζj |i ∈ I, j ∈ J ][[~]][[ε]]

Here ζQz =
∑
i∈I,j∈J ζiQijzj for some coefficients Qij ∈ F, and Pk ∈ F[ζ, z] is of degree at most 2k in ζ

and also at most of degree 2k in z.

1The knots 816 and 10156 have identical HOMFLY polynomial and Khovanov Homology.
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Note that the set of general Gaussians is closed under products but not sums.

Definition 6. For any F ∈ F[[ε, z, ζ]] the contraction in the variable ζk is defined (provided the result
converges) as 〈F 〉ζk = (F |ζk 7→∂zk )|zk 7→0.

More generally we define recursively 〈F 〉v1,...,vg = 〈〈F 〉v1,...vg−1〉vg . Also 〈F 〉K means contraction along
all variables ζi for i ∈ K.

In other words to contract along ζk we replace the variable ζk by ∂zk , differentiate assuming the derivatives
always are ordered first and then evaluate at zk = 0. For example 〈ζ1z2 + 2ζ2z

2
2 + 3z1z2ζ2〉ζ2 = 3z1. When

contracting several variables the end result is independent of the order of carrying out the contractions.
The crucial observation is that Gaussians are closed under contraction. This follows from the next theo-

rem:

Theorem 3. Suppose P ∈ F[[z]][ζ] and the labels of the variables are I = J in the above and w ∈ F:

〈P (z, ζ)ew+λ`+ζl+ζQz〉J = det(Q̃)ew+λQ̃`〈P (Q̃(z + `), ζ + λQ̃)〉J

whenever the right hand side with Q̃ = (1−Q)−1 exists.

The key to the proof is the following lemma.

Lemma 4.
〈ec+λz+z`+ζQz〉 = det(Q̃)ec+λQ̃`

whenever the inverse matrix Q̃ = (1−Q)−1 exists.

Proof. Without loss of generality we assume c = 0. The proof is to simply expand both sides explicitly
and describe the resulting terms combinatorially in terms of certain labelled graphs reminiscent of Feynman
diagrams.

Using the geometric series and

det Q̃ = det elog(1−Q)−1

= etr log(1−Q)−1

= e
∑
k tr

Qk

k

the right hand side may be written as

e
∑
k λQ

k`+trQ
k

k = e
∑
k

∑
i1...ik

λi0Q01i1
Qi1i2 ...Qik−1ik

`ik
+ 1
k
Qi0i1Qi1i2 ...Qiki0

The left hand series can also be expanded:

∞∑
aij ,bi,cj=0

( ∏
r,s∈I

∂ars+brzr

) ∏
i,j∈I

λcjQ
aij
ij `

bi

aij !bi!cj !
z
aij+cj
j |z=0

Non-zero contributions are determined by a choice of the numbers aij , bi, ci for all i, j ∈ I and a choice of

matching each copy of ∂r with a factor zr for any r ∈ I. Such a choice contributes precisely
λ
cjQ

aij
ij `bi

aij !bi!cj !
.

To describe both right and left hand sides more carefully we use simple Feynman type graphs that we
call diagrams. A diagram is a directed graph D with only 1 and 2-valent edges and with vertices carrying
labels i ∈ I. Each edge also carries a weight, for edge from i to j the weight is Qij if the vertices are both
2-valent and if i is an end-point the weight is λi and if j is, the weight is `j . In the latter two cases we
require i = j. The weight wt(D) of a diagram D is the product of the weights of all its edges. D is the set
of all diagrams.

If C denotes the set of connected diagrams we may summarize the computation of the right hand side as:

RHS = e
∑
G∈C

wt(G)
|Aut(G)|

Aut(G) denotes the number of automorphisms of the diagram (with labelled vertices), it is of size k for a
wheel graph with k edges and 1 for a path.

Next if we define an (edge) enumeration of a diagram D to be a choice of ordering the edges with a given
weight. The number of edge enumerations of diagram D diagrams is called E(D). We claim that if Nw(D)
is the number of edges of weight w we have

LHS =
∑
D∈D

wt(D)
E(D)∏
wNw(D)!

To explicitly see how the contributing terms are in bijection with the edge enumerated diagrams, for each
i, j we arbitrarily match up aij pairs of a ∂zi with a zj and identify each pair with an edge with beginning
labeled j and end labelled i. Now matching up the edges according to how the term matches up the ∂zr with
the zr we get a diagram and after choosing arbitrary starting points in all the wheel components and an
arbitrary order of the components we may enumerate each edge type according to its order of occurrence.
This yields an enumerated diagram for the contributing term. Conversely, using the same conventions an
enumerated diagram also produces a contributing term as we can read off precisely which ∂r is paired with
which zr.
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To finish our proof all that remains is to compute D in terms of the connected diagrams it consists of.
We claim that

E(D) =

∏
wNw(D)!∏

G∈C |Aut(G)|nG(D)nG(D)!

where nG(D) is the number of copies of a connected diagram G occurring in D. This is because after ordering
the edges of each weight type we overcounted by precisely reordering the connected components and also
the automorphisms of each component.

Finally since wt(D) =
∏
G∈C wt(G)nG(D) we get

LHS =
∑
D∈D

∏
G∈C

(
wt(G)
|Aut(G)|

)nG(D)

nG(D)!
=

∑
(nG)G∈C

∏
G∈C

(
wt(G)
|Aut(G)|

)nG
nG!

= e
∑
G∈C

wt(G)
|Aut(G)| = RHS

Proof. (of Theorem 3)
To derive the theorem from Lemma 4 above we introduce auxiliary variables m,µ and write

〈P (z, ζ)ec+λz+ζ`+ζQz〉 = P (∂µ, ∂m)ec+(λ+µ)z+ζ(`+m)+ζQz|m=µ=0

Since these differentiations commute with contraction, replacing ` by `+m and λ by λ+ µ the lemma says

〈P (z, ζ)ec+λz+ζ`+ζQz〉 = det(Q̃)P (∂µ, ∂m)ec+(λ+µ)Q̃(`+m)|m=µ=0 =

det(Q̃)P (Q̃(`+m), ∂m)ec+λQ̃(`+m)|m=0 = det(Q̃)ec+λQ̃`〈P (Q̃(`+ z), ζ + λQ̃)〉z,ζ

From the formula in the theorem it is clear that for any docile perturbed Gaussian G its contraction
〈G〉S is still docile perturbed Gaussian whenever it is defined.

3.2 How to compose in DoPeGDO

Composing docile perturbed Gaussians can be done with the techiques from the previous section. For this
we need two steps: first on the weight 0 or 2 variables over the field Q and then on the variables of weight 1

over the field Q(A, T
1
2 ).

3.3 Runtime estimate

4 Computations to first order

4.1 The invariant to first order in ε

Write down the actual tensors to first order and compute some simple examples.

4.2 Seifert formula and Alexander polynomial at ε = 0

Say something about Burau too?

5 More on the algebra U
5.1 A ~-adic Drinfeld double construction

Below we will construct a quasi-triangular Hopf algebra D from two algebras A and B and an element R in
their tensor product. This is a version of the Drinfeld double construction but it is a little non-standard in
the sense that we attempt to formulate everything in terms of the R-matrix R. In case A and B are finite
dimensional, the reader should have no trouble recovering the usual construction by taking the dual to the
R-matrix as a pairing. However in our ~-adic examples the dual to R may not exist so we prefer the following
construction.

We say two elements f ∈ Hom(B⊗I ⊗A⊗J ,B⊗K ⊗A⊗L) and g ∈ Hom(A⊗K ⊗B⊗L,A⊗I ⊗B⊗J) are duals
if we have

(
∏
i∈I

Ri,̃i)(
∏
j∈J

Rj̃j)//f//(idA)ĨI(idB)J̃J = (
∏
`∈L

R`,˜̀)(
∏
k∈K

Rk̃k)//g//(idA)L̃L(idB)K̃K

here idI
Ĩ

simply renames the tensor slots in set I to the corresponding slots in Ĩ.
Suppose we have two algebras A and B and element R ∈ B⊗ A with the following properties.

1. There exists a multiplicative inverse R̄ ∈ B⊗ A, so R12R̄34//(mB)131 (mA)242 = 1112.

2. for any f, f ′ ∈ A∗ we have R21//f = R21//f
′ ⇒ f = f ′.
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3. Also for any g, g′ ∈ B∗ we have R12//g = R12//g
′ ⇒ g = g′.

4. Next, assume both mA and mB have duals called ∆B and ∆A, such that ∆A(xy) = ∆A(y)∆A(y).

5. Also assume 1A and 1B have duals called cB and cA.

6. Assume there exists SA ∈ Hom(A,A) such that R12//(SA)2 = R̄12 and that SA has a compositional
inverse S̄A and both have duals SB and S̄B respectively.

7. Finally, assume that the element µijk` = R16R34//(S̄A)4//(mB)1i3k (mA)4j6` ∈ Hom(B⊗{i}⊗A⊗{j},B⊗{k}⊗
A⊗{`}) has a dual called µ̃k`ij ∈ Hom(A⊗{k} ⊗ B⊗{`},A⊗{i} ⊗ B⊗{j}).

With all assumptions in place we are able to construct a quasi-triangular Drinfeld double D = Bcop ⊗A.

Theorem 4. The following defines a quasi-triangular Hopf algebra structure on the topological tensor product
D = Bcop ⊗ A with universal R-matrix R, where Bcop and A are Hopf sub-algebras in the obvious way. The
superscript cop means the coalgebra structure is given by ∆D = ∆op

B ⊗ ∆A and SD = S̄B ⊗ SA with co-unit
cB ⊗ cA and unit 1D = 1B ⊗ 1A and finally product given by

(mD)i1,i2j1,j2k1k2
= µ̃i2j1

i′2,j
′
1
//(mB)

i1j
′
1

k1
(mA)

i′2j2
k2

Proof. The first step is to check that both A and B are Hopf algebras with the coproducts, antipodes and
counits defined above.

The coassociativity of ∆A. In other words we need to check that

(∆A)i1j//(∆A)j23 = (∆A)ij3//(∆A)j12

or equivalently
Rsi//(∆A)i1j//(∆A)j23 = Rsi//(∆A)ij3//(∆A)j12

By definition of ∆A as the dual to mB we can rewrite the left hand side of the equation as:

Ra1Rbj//(mB)abs //(∆A)j23 = Ra1Rb2Rc3//(mB)abs //(mB)bcb

Applying a similar argument to the right-hand side and invoking the associativity of mB finishes the proof
of coassociativity. Similarly the coassociativity of ∆B follows from the associativity of mA.

Next we check that ∆B is an algebra morphism. Starting from our assumption on ∆A:

(mA)ij1 //(∆A)1k` = (∆A)i12(∆A)j34//(mA)13k (mA)24`

We compose both sides with RriRsj and use the definition of ∆ repeatedly to rewrite everything in terms
of operations on B. For the left hand side this goes as follows:

RriRsj//(mA)ij1 //(∆A)1k` = Rab//(∆B)ars//(∆A)bk` = R1kR2`//(∆B)ars//(mB)12a

The right-hand side composed with RriRsj can be rewritten in a similar fashion as

R1kR2`//(∆B)112(∆B)234//(mB)13r (mB)24s

By the cancellation property we can get rid of the two R-matrices and finish the proof of the property.
Next we check that the antipode SA satisfies ∆i

12//(SA)2//(mA)12k = (cA)i//(1A)k. Starting with the left-
hand side we compose with Rsi and expand the coproduct and the definitions of SA and R̄ to find:

Rsi//∆
i
12//(SA)2//(mA)12k = Ra1Rb2//(mB)abs //(SA)2//(mA)12k = Ra1R̄b2//(mB)abs (mA)12k = Rsi//(cA)i(1A)k

The arguments for checking the other antipode axioms are analogous.
Turning to the double D, the computations, although fairly standard, become significantly harder to

follow. Given that we know that A and B are Hopf algebras we prefer to write part of our formulas graphically
as follows. The R-matrix is depicted as a positive crossing pointing upwards with the over-strand in Blue
and the under-strand in Adom which is the Hebrew word for red. Next (mA)ijk is interpreted as connecting
the end of red strand i to the start of red strand j naming the new strand k, and similarly for mB with blue
strands. By associativity the order of carrying out the multiplications does not matter. The coproduct (∆A)i`r
is interpreted as placing a trivalent vertex at the endpoints of strand i and naming the two edges that come
out ` and r such that ` is to the left and r to the right with respect to the orientation on strand i. Since the
coproduct is an algebra morphism and the ∆A is dual to mB this amounts to doubling a blue strand. Finally
the square of the antipode (S2

A)i is interpreted appending and prepending adding full rotations on strand i,
a positive rotation at the start and a negative one at the end. The interpretation for (S̄2

A)i is similar with
opposite rotations. Another convention is that the blue and red strands corresponding to the same tensor
factor of D are connected, the end of the blue to the start of the red. Of course we can only depict elements
of the tensor powers of D that are expressible by R-matrices. By duality and the cancellation property this
is sufficient for our purposes.

Before establishing associativity let us give a graphical interpretation of the multiplication mD when it
is applied to R-matrices: By definition

M = Ri1u1Ru2i2Rj1v1Rv2j2//(mD)i1i2,j1j2k1k2
= Ri1u1Ru2i2Rj1v1Rv2j2//µ̃

i2j1
i′2j
′
1
//(mB)

i1j
′
1

k1
(mA)

i′2j2
k2
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By duality Ru2i2Rj1v1//µ̃
i2j1
i′2j
′
1

= Rxi′2Rj′1y//µ
xy
u2v1 so that

M = Ri1u1Rxi′2Rj′1yRv2j2//µ
xy
u2v1//(mB)

i1j
′
1

k1
(mA)

i′2j2
k2

=

Ri1u1Rxi′2Rj′1yRv2j2R16R̄34//(S̄
2
A)4//(mB)1x3u2

(mA)4y6v1 //(mB)
i1j
′
1

k1
(mA)

i′2j2
k2

The final formula is a formula that can be expressed graphically according to the rules explained above.

Figure 5: Crossings and a graphical interpretation of the double multiplication mD.

In this graphical language the associativity (augmented by R-matrices) now has a graphical proof given
in the next figure.
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Figure 6: The graphical part of the proof of associativity of the double multiplication.

Next check that ∆D is an algebra morphism and check the second quasi-triangular axiom.

5.2 Drinfeld double construction of U from A
In this section we construct the algebra U from A by the Drinfeld double construction from the previous
section. Our starting point is the pair of complete ~-adic algebras

A = Q[a, x][[~]]/([a, x] = x) B = Q[y, b][[~]]/([b, y] = −εy)

and the element

Rij =
∑
m,n

~m+nymi b
n
i a

n
j x

m
j

[m]!n!
∈ B⊗ A

To show that this input is sufficient to carry out the Drinfeld double construction as outlined in the
previous section we check assumptions 1− 7. For 1 the multiplicative inverse R̄ij = 1 + O(~) exists and can
be computed order by order in ~. We do not need the explicit formula but will require that the coefficient of
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ymi b
n
i in R̄ij is divisible by ~m+n. This follows by induction: Suppose we already found an element Xn such

that R̄ij = Xn +O(~n+1) generated by xj , aj and ~yi, ~bi then we compute Xn+1 = Xn +Y ~n+1 as follows.
By assumption RijXn = 1 + E~n+1 + O(~n+2) for some E(~yi, ~bi, aj , xi). Since R = 1 + O~ we have

1 = RijR̄ij = Rij(Xn + Y ~n+1 + O(~n+2)) = (E + Y )~n+1 + O(~n+2)

and so we find Y = −E.
The cancellation properties 2 and 3 follow directly from the fact that ~m+n

[m]!n!
ymbn and anxm are bases

for B and A respectively. Any f ∈ A∗ is determined by its effect on the monomials so to know f(anj x
m
j ) we

need only look at the coefficient of ~m+n

[m]!n!
ymi b

n
i in Rij//f . Similarly for g ∈ B∗ the coefficient of ~m+n

[m]!n!
ani x

m
i

in Rji//g determines g(ymj b
n
j ).

Lemma 5. Let Ā, B̄ be the subalgebras generated respectively by ~a, ~x and by ~y, ~b. The element f ∈
Hom(B⊗I ⊗ A⊗J ,B⊗K ⊗ A⊗L) has a dual g ∈ Hom(A⊗K ⊗ B⊗L,A⊗I ⊗ B⊗J) if and only if we have

(
∏
i∈I

Ri,̃i)(
∏
j∈J

Rj̃j)//f ∈ B⊗Ĩ ⊗ A⊗J̃ ⊗ B̄⊗K ⊗ Ā⊗L

Also, if they exist, duals are unique.

Proof. The final statement follows from the cancellation properties 2, 3.

Turning to points 4−5 we get the existence of the dual ∆A directly from the lemma since R ∈ B̄⊗A and
B̄ is a subalgebra of B. The existence of ∆B, cA, cB follows as well. To prove the algebra morphism property
of ∆A we will compute its effect on the monomials by explicitly computing

R1iR3j//(mB)13u =
∑

k,`,m,n

~k+`+m+n

[k]!`![m]!n!
yk+mu (bu−εm)`bnua

`
ix
k
i a
n
j x

m
j =

∞∑
r,s=0

(ai+aj)
s
∑
m

[
r
m

]
Ami x

r−m
i xmj

~r+s

[r]!s!
yrux

s
u

Here we set Ai = e−ε~ai . Now set up a temporary operator ∇ : A → A⊗ A defined by ∇(a) = a1 + a2 and
∇(x) = x1 + A1x2 together with ∇(uv) = ∇(u)∇(v). By induction we can show that ∆A and ∇ agree all
monomials, not just the generators, finishing the proof of the property.

Next for point 6 we remark that SA(an1x
m
1 ) is the coefficient of the dual basis element ~m+n

[m]!n!
ym1 b

n
1 in R̄12.

This exists because R̄ ∈ B̄ ⊗ A as shown in the proof of part 1 above. The dual SB exists as well by an
application of the lemma. The compositional inverse S̄A expressed as a power series in Q[a, x][[α, ξ, ~]] can
be computed order by order in α, ξ. Similarly for SB.

Finally for point 7 we need to show R1,uRv,2//µ
12
34 is an element of B⊗A⊗ B̄⊗ Ā. The lemma then implies

the existence of the dual µ̃. First recall that

R1,uRv,2//µ
12
34 = R1uRv2RcfRde//(S̄A)e//(mB)cud3 (mA)evf4

By the Hopf algebra properties of A and B we know that RcfRde//(S̄A)e//(mB)cd3 (mA)ef4 = (1B)3(1A)4.
Furthermore the commutation relation xman = (a−m)nxm shows that to prove our claim we may change
the order of multiplication in mA and similarly for mB. This finishes the argument and verifies that our
choice of A,B, R satisfies the conditions 1-7.

5.3 Ribbon element and spinners/rotation

We now prove the existence of a ribbon element in U and prove that it takes the following form:

v = e−~(2εa1−t1)(X12//S1//m
12
1 )

Strategy: square roots in DoPeGDO are unique. First find C as a square root, then multiply C by the
Drinfeld element to get v from the formula C = uv−1.

5.4 Everything is DoPeGDO

6 Odds, ends and future directions
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7 Appendix: Computer implementation and table of knots
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